Experimental demonstration of labyrinth-based left-handed metamaterials.

نویسندگان

  • Irfan Bulu
  • Humeyra Caglayan
  • Ekmel Ozbay
چکیده

In this present work, we propose and demonstrate a resonant structure that solves two major problems related to the split-ring resonator structure. One of the problems related to the split-ring resonator structure is the bianisotropy, and the other problem is the electric coupling to the magnetic resonance of the split-ring resonator structure. These two problems introduce difficulties in obtaining isotropic left-handed metamaterial mediums. The resonant structure that we propose here solves both of these problems. We further show that in addition to the magnetic resonance, when combined with a suitable wire medium, the structure that we propose exhibits left-handed transmission band. We believe that the structure we proposed may have important consequences in the design of isotropic negative index metamaterial mediums.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission, refraction, and focusing properties of labyrinth based left-handed metamaterials

In this present article, we studied the transmission, refraction and focusing properties of one, two and three dimensional labyrinth based left-handed metamaterials. We demonstrated that the proper periodic arrangement of labyrinth structures and wires results in left-handed transmission. By using a two dimensional labyrinth based left-handed slab, it is shown that it is possible to image the f...

متن کامل

Giant Goos-Häenchen Shift of a Gaussian Beam Reflected from One-Dimensional Photonic Crystals Containing Left-Handed Lossy Metamaterials

We perform a theoretical investigation on the Goos-Häenchen shift (the lateral shift) in one-dimensional photonic crystals (1DPCs) containing left-handed (LH) metamaterials. The effect was studied by use of a Gaussian beam. We show that the giant lateral displacement is due to the localization of the electromagnetic wave which can be both positive and negative depending on the incidence angle o...

متن کامل

Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials

We present free-space microwave measurements on composite metamaterials (CMMs) consisting of split ring resonators (SRRs) and wires either on the same dielectric board or on alternating boards. Our experimental results disprove the widely held belief that the occurrence of a CMM transmission peak within the stop bands of the SRRs alone and wires alone constitutes a clear demonstration of left-h...

متن کامل

Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials.

We studied focusing in a two-dimensional metamaterial that was based on a labyrinth structure. We theoretically showed that the labyrinth-based metamaterial exhibits negative indices of refraction between 6 and 6.4 GHz. We experimentally studied the focusing effect by measuring electric field intensities on the output side of the metamaterial when the source was placed in front of the input sid...

متن کامل

A Compact Ultra-Wideband Filter Based on Left Handed Transmission Line by Using Complementary Split Ring Resonators and Series Capacitor

A compact and sharp rejection UWB microstrip bandpass filter is developed using left handed metamaterials. For realizing a backward-wave propagation medium, two split ring resonator (CSRR) in the back substrate side and also one series capacitor etched in the host line, are used to produce a negative effective ε and μ, simultaneously. Moreover, in the proposed structure, two doublets parallel c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 13 25  شماره 

صفحات  -

تاریخ انتشار 2005